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Toy model for the mean-field theory of hard-sphere liquids
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We investigate a toy model of liquid, based on simplified hypernetted chain equations in very large spatial
dimensionD. The model does not exhibit a phase transition, but several regimes of behavior whenD→` can
be observed in different intervals of the density.

PACS number~s!: 61.20.Gy; 05.20.Jj
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I. INTRODUCTION

The theory of classical liquids@1,2# recently received an
important stimulus from the theory of structural glass
@3–11#. In the pioneering series of papers by Kirkpatrick a
Thirumalai@12,13# the possible connection of the structura
glass transition with the spin-glass transition inp-spin mod-
els was put forward. The analogy was then developed, e
in the problem of minimally correlated sequences, wh
were shown to possess a glassy behavior without quen
randomness@14,15#. Other examples of systems without di
order that nevertheless exhibit glassy behavior were
found @16–19#.

However, it would be desirable to take the analogy w
true structural glasses further. One of the difficulties occ
ring in structural glasses, when compared to spin glas
comes from the absence of any kind of analytically solva
mean-field model involving particles interacting through
two-particle potential. In the case of a spin glass, the rol
played by the fully connected Ising model, which is solvab
very easily. The disordered version is the well-know
Sherrington-Kirkpatrick model@20#, of which the under-
standing is now very close to complete@21#.

There are many mean-field results concerning thedy-
namic glass transition, mainly using mode-coupling equ
tions for the p-spin model, which offer exact result
@12,13,22#. For spin models, an approach was developed
connect the dynamic and static properties of the glassy p
of spin Hamiltonians@23,24#. As for the general picture tha
arises from the one-step replica breaking scheme, it is
lieved that these spin glasses behave in the same wa
structural glasses.

Indeed, the approximations forstatic glass transitions in
structural glasses@3–11# confirm this conjecture. The static
of a structural glass is investigated essentially as follows.
a starting point, a variational formulation for the liquid
found and the replica trick is used in order to anticipate
possible multiplicity of pure states. This leads to a formu
tion in terms of a liquid composed effectively ofm-particle
bound states, wherem is the number of replicas. In the varia
tional formulation,m is an additional parameter to be op
mized. The optimization involves finding first the two
particle correlation function for the centers of mass of
PRE 621063-651X/2000/62~5!/6554~6!/$15.00
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m-particle complexes and second the entropy of a single
ticle moving in the field of the others.

The variational formulation is provided by the hyperne
ted chain~HNC! approximation, which leads naturally to a
effective free energy functional. That is why we also foc
on the HNC approach in this paper. The two-particle cor
lation function is found by solving the HNC equations~ap-
propriately modified in the replica treatment!. Unfortunately,
this step must be done numerically, because no analytic
sult is available for the HNC equations.

It would be desirable to obtain an analytical solution f
the static properties of a ‘‘mean-field’’ liquid. Then the nee
for numerical solution of the HNC equations would b
avoided. However, no results for a mean-field, static, str
tural glass are known, as far as we know. It even sounds
very reasonable to speak about a mean-field liquid, beca
the relevant high-density phase is characterized by str
short-range correlations, which can hardly be replaced by
effective medium. So the meaning of the mean field sho
be better specified. In our investigation, we will understa
by ‘‘mean field’’ the situation that occurs in very high d
mension,D→`. The purpose of the present work is to in
troduce a simple model of a liquid that is analytically sol
able in the limit of infinite dimension, at least in a certa
well-defined range of densities.

We do not pretend to be able to fully solve the gla
properties of the hard-sphere liquid. We present here a pa
step only, consisting in providing an analytical solution f
the two-particle correlation function. To complete the p
ture, it would be necessary to find the entropy of a sin
hard sphere in the effectivem-component liquid. This is a
quite different task, requiring other methods. We will n
cover the latter problem here.

II. SIMPLIFIED HNC EQUATIONS

We consider a liquid composed of hard spheres with
diameter 1. There is only one independent state varia
which is the spatial density of particlesr.

The configuration of the liquid is described by the rad
pair distribution functiong(r )5h(r )11. In the hypernetted
chain approximation@25# we have a closed set of equation
for the correlation functionh(r ),
6554 ©2000 The American Physical Society
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PRE 62 6555TOY MODEL FOR THE MEAN-FIELD THEORY OF . . .
h~r !115exp@W~r !2bU~r !#,

~1!

Ŵ~p!5
rĥ2~p!

11rĥ~p!
.

The potential isU(r )50 for r .1 andU(r )5` for r ,1.
These equations can be interpreted as conditions for min
zation of the free energy functional@3#

F @h#5r2E dr r D21
„@h~r !11#$ ln@h~r !11#211U~r !%

11…1
1

~2p!DE dp pD21L3„rĥ~p!… ~2!

with L3(x)52 ln(11x)1x2x2/2. The functionL3(x) has the
following behavior: L3(x)→` for x→21 and L3(x)
.2x3/3 for x!1.

Our main approximation will consist in replacing th
function L3(x) by L`(x), whereL`5` for x,21 andL`

50 otherwise. The motivation for this approximation is th
we suppose that the main effect ofL3(x) is to forbid the
region where2rĥ(p).1. Then minimization of the free
energy functional amounts to satisfying the conditions

rĥ~p!>21,

h~r !>21, ~3!

h~r !521 for r ,1,

which are in fact the minimum physical requirements for a
correlation functionh(r ). In this sense we are building
‘‘minimum’’ model of a liquid. In addition to the constraint
~3! we require that the functionh(r ) depends continuously
on the density. The absence of a solution that is continu

FIG. 1. Pair distribution functiong(r )5h(r )11 of the three-
dimensional model liquid, for densities~from top to bottom! r
50.6, 0.7, 0.8, 0.9, 1.00, 1.1, 1.2, 1.23, 1.26, 1.29, 1.32, 1
1.38, 1.41, 1.44, 1.47, 1.5. Thenth curve from the bottom is shifted
upward byn.
i-

t
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in density would be a signal of a phase transition. This is
found in the present calculations, however.

In three dimensions~3D! we can compute the function
h(r ) numerically by increasing slowly the densityr and ad-
justing iteratively the functionh(r ) so that the conditions~3!
are satisfied. The resulting pair distribution functiong(r )
5h(r )11 is shown in Fig. 1. The Fourier transformĥ(p)
for r51.2 is shown in Fig. 2.

We can see that for densities up to aboutr51 the pair
distribution function agrees qualitatively with the wel
known results of the HNC approximation or numerical sim
lations ~see @1#!. However, at aboutr51.2 the behavior
changes. A gap opens between the principal peak atr 51 and
the secondary peak atr .2. The gap broadens with increase
density and at aboutr.1.5 a second gap occurs aroundr
.2.2. We observed, that further compression leads to
occurrence of a third gap separating the peaks atr .1.6 and
r .2. We expect that continued increase of the density w
result in an increased number of gaps.

The presence of the gaps is an artifact of the approxim
tion. In reality the values ofg(r ) will not be strictly zero, but
small.

From the value of the radial distribution function atr
51 the pressure can be computed@1# and the resulting equa
tion of state is shown in Fig. 3, together with the resu
obtained by solving the HNC equations~1! and the formula
computed in the Percus-Yevick~PY! approximation@1#. We
can see that our model behaves qualitatively in the same
as the other approximations, even though quantitative ag
ment is poor. On the other hand, the equation of state of

,

FIG. 2. Fourier transform of the correlation function for a thre
dimensional liquid, at the densityr51.2.

FIG. 3. Equation of state for a three-dimensional liquid. O
model: full line. HNC approximation: dashed line. Percus-Yevi
approximation: dash-dotted line.
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6556 PRE 62GIORGIO PARISI AND FRANTIŠEK SLANINA
model does not differ from either the HNC or PY approx
mation more than these two approximations differ from o
another.

We can see from these results that the present approa
3D gives at least qualitatively sensible results. However,
aim is to provide not a new approximation for real thre
dimensional liquids, but a model that describes reasona
well the qualitative features of a liquid and is soluble in t
limit of infinite spatial dimension. This will be done in th
next section.

III. SOLUTION OF THE MODEL IN HIGH DIMENSION

In this section we will investigate aD-dimensional ver-
sion of the model, withD52N13 and N→`. While no
analytical treatment is available for the HNC approximatio
we will see that our scheme yields an analytic result in h
dimension.

The main quantity of interest is again the correlation fun
tion h(r )5g(r )21. The hard-sphere potentialV(r )5` for
r ,1 and V50 for r .1 implies thath(r )521 for r ,1,
irrespective of the density. Therefore, we can decompose
correlation function in the formh(r )5h0(r )1h̄(r ) where
h0(r )52u(12r ) and h̄(r )50 for r ,1.

The pressure is directly related to the value ofh(r ) at r

51, more precisely to limr→11h(r )5h̄(11). The formula
for pressure in arbitrary dimension reads~see@1#!

1

kT
P5r1

1

2
VDr2@11h̄~11!#. ~4!

In the course of the calculations we find that pressure
density occur in combination with the volume of th
D-dimensional unit sphereVD . This leads to the introduction
of the rescaled quantityr̄5rVD for the density, while for the
pressure we useP̄5VDP/kT.

The conditions~3! involve both the functionh(r ) and its
Fourier transform. To find the behavior ofh(r ) in high di-
mensionD we investigated first the properties of the Four
transform in the limitD→`. A detailed account can b
found in Appendix A. The most important formula use
throughout this paper is the Fourier transform of the radia
symmetric function f (r )5u(12r )/VD . Denoting N

5(D23)/2 and rescaling the momentum asp̂5p/N we
find that the Fourier transform isf̂ ( p̂)5C( p̂), C( p̂)
5C0( p̂)5e2Nf0( p̂) for p̂,1 and f̂ ( p̂)5C1( p̂)
5e2Nf1( p̂)cosNf2(p̂) for p̂.1. Note that uC( p̂)u<C(0)
51. The functionsf0 , f1, and f2 do not depend onN.
They are listed explicitly in Appendix A@Eqs. ~A9! to
~A11!#.

In the zeroth approximation we take into account only
hard-sphere potential and not the correlations between
ticles. Then h(r )5h0(r ) and ĥ( p̂)52VDC( p̂), which
obeys Eq.~3! as long asr̄,1. Therefore, forr̄,1 we have
h̄(r )50 and, using Eq.~4!, the pressure is given by the firs
virial correction,

P̄5 r̄1
1

2
r̄2. ~5!
e
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For r̄.1 we should use the decompositionh(r )5h0(r )
1h̄(r ). However, there is a nuisance consisting in the d
continuity of h̄(r ) at r 51. So we modify the decompositio
to

h~r !5h0* ~r !1h̄* ~r !, ~6!

where still h̄* 5h̄(r ) for r .1, but h̄* (r ) is continuous for
all r. Hence, forr .1 we haveh0* (r )5h0(r )50.

To find the Fourier transform ofh we proceed first with
Fourier-transforming the functionh0* . At this moment we
use an important property of the Fourier transform in ve
high dimension~see again Appendix A!: if a function is zero
outside a specific interval and approaches linearly to the
per edge of the interval, then its Fourier transform depe
only on the behavior near the upper edge. That is, if
function approaches a nonzero limit at the edge, the Fou
transform depends only on that value. If, on the contrary,
limit is zero, the Fourier transform is determined by the fi
derivative at the edge. The former case applies to the pre
situation.

Indeed, we haveh0* (r )50 for r .1 and h* (12)521

2A, whereA5h̄(11)5h̄* (1). Then

h̄0*̂ ~ p̂!52~11A! VD C0~ p̂!. ~7!

We will derive an equation determining the value ofA later
on.

When going from the decompositionh(r )5h0(r )1h̄(r )
to h(r )5h0* (r )1h̄* (r ), we did not fix the functionh0* (r )
uniquely: the only thing we required up to now was t
continuity of h̄* (r ). Another restriction comes now from th
conditions~3!, namely, from the inequalityĥ( p̂)>1/r. This
inequality will surely be satisfied, if we set

h̄*̂ ~ p̂!5u1S ~A11!VD C0~ p̂!2
1

r D . ~8!

@We denoteu1(x)5x for x.0, u1(x)50 for x<0.# This

means thath̄*̂ ( p̂)50 for p̂. p̂c , where the value ofp̂c can
be obtained by solving the equation

r̄ ~A11! C0~ p̂c!51. ~9!

Clearly, p̂c50 for r̄,1. For r̄.1 we found it useful to
introduce the quantity

r15
ln r̄

N
. ~10!

Indeed, one particle occupies space 22DVD , so an absolute
upper bound for the density isr1, ln 4.

Let us suppose thatp̂c,1. This condition restricts the
range of densities investigated to a certain interval, wh
will be found in what follows. The reason for this restrictio
consists in the observation that only in the intervalp̂c,1 can
we ensure, the solution of Eq.~9!.
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For p̂,1 the functionC0( p̂)5exp@2Nf0(p̂)# is mono-
tonically decreasing and we have the following equation
p̂c :

f0~ p̂c!5r12
ln~A11!

N
. ~11!

As we explained above, when computing the inverse Fou

transform ofh̄*̂ ( p̂) we need only the behavior close to th
point p̂c , which is

h̄*̂ ~ p̂!.2VD C08~ p̂c! p̂c S 12
p̂

p̂c
D ~12!

and gives, using Eq.~A15!,

ĥ1~r !5S N

2p DVD
2 p̂c

D11@2C08~ p̂c!#~A11!

D11
C0~ p̂cr !.

~13!

Now we can close the equation for the still unknow
quantityA,

A

A11
5S N

2p D D N

D11
VD

2 p̂c
D11f08~ p̂c! C0

2~ p̂c!. ~14!

The coupled pair of equations~11! and ~14! constitute the
basis of our approach. Moreover, we will show that forp̂c
,1 we can neglectA in the limit N→`. Then only a single
equation forp̂c is necessary. A more precise analysis sho
thatA!1 if pc,12O(1/N), so if we are closer than a valu
of orderO(1/N) to the pointp̂c51 both Eqs.~11! and ~14!
should be solved in parallel. We will omit the investigatio
of this extremely narrow interval here. We should only be
in mind that by writing, for example,p̂c,1 we mean in fact
p̂c,12O(1/N).

In the intervalp̂c,1 we have

f08~ p̂c!5
p̂c

11A12 p̂c
2
, p̂c . ~15!

Hence, if we suppose that a solution such thatA,1 exists,
we have

A<S N

2p D D

VD
2 p̂c

D12C0
2~ p̂c!.exp@22NK~ p̂c!#, ~16!

where

K~ p̂!5 ln~11A12 p̂2!2A12 p̂22 ln p̂. ~17!

We haveK(1)50 andK8( p̂)52A12 p̂2 / p̂,0, so K( p̂)
.0 for p̂,1. For fixedp̂c,1 andN→` we haveA!1 and
therefore we can neglectA in Eqs.~11! and ~14!.

The conditionp̂c,1 is equivalent to working in the rang
of densitiesr1,r1c5f0(1)512 ln(2)50.3068 . . . . In this
region the following equation forp̂c holds:
r

er

s

r

r15 ln~11A12 p̂c
2!2A12 p̂c

2112 ln 2. ~18!

The solution of this equation can be easily obtained in
form of a power series. We show here only the first seve
terms~the expansion up to order 16 is given in Appendix
and the graph is shown in Fig. 4!:

p̂c
254 r122 r1

22
2

3
r1

32
5

6
r1

42O~r1
5!. ~19!

From the solution of Eq.~18! we can compute the pres
sure. We writeP̄5 r̄1 1

2 r̄21Pc and rescale the correction a
Pc5exp(NP1). We obtain

P15222 ln 21 ln p̂c
2 . ~20!

We can see that the densityr1t5f0(2/e)50.146 76 . . .
separates two regimes. Forr1,r1t the correctionPc to the
lowest virial becomes negligible for largeN, while for r1
.r1t the correction diverges forN→`. The graph of the
function P1(r1) is shown in Fig. 5.

For the correlation function in the intervalr ,1/p̂c we
haveh(r )5exp@Nh1(r)#, where

h1~r !5122 ln 21 ln p̂c
22r11A12 p̂c

2r 2

2 ln~11A12 p̂c
2r 2!. ~21!

FIG. 4. Dependence of the momentump̂c on the rescaled den

sity in the regimep̂c,1.

FIG. 5. Equation of state for our model in the limit of infinit

dimension, in the range of densities wherep̂c,1.
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For r .1/p̂c we can use the following scalingĥ(r )
5exp@Nh1(r)# cos@Nh2(r)# where, using the expression
~A10! and ~A11!, we obtain

h1~r !5122 ln 21 ln p̂c2r12 ln r , ~22!

h2~r !5Ap̂c
2r 2212arctanAp̂c

2r 221. ~23!

We can also see thatuh1(r )u!1 for r1,r1c , so thatg(r )
.0 for r .1 and the gaps ing(r ), discussed in the las
section, do not occur. However, whenr1 approachesr1c ,
the absolute value ofh1(r ) can be of orderO(1) and a gap
can appear at the densityr1c . The detailed investigation o
this process and the behavior of the model forr1.r1c re-
mains an open question.

IV. CONCLUSIONS

We investigated a simple model for a hard-sphere liqu
By numerical solution in three dimensions, we found a qu
tatively realistic behavior. The results for the equation
state are compatible with the hypernetted chain and Per
Yevick approximations. While in three dimensions the d
ference of the present approach from the HNC and PY
proximations is comparable to the difference between H
and PY themselves, and therefore our approach does no
any better than previous schemes, we consider it clearly
perior in high dimension. Indeed, it provides an analyti
result, while none is known for the HNC. The PY approx
mation, solvable exactly in 3D, could perhaps yield an ex
result in arbitrary dimension, but, in view of future applic
tion in the static glass transition of hard spheres, the
approach is inconvenient, because it lacks a suitable va
tional formulation.

We solved the model analytically in the limit of larg
spatial dimension. We found that two scales of density a
pressure appear, which correspond to two regimes of den
For r̄,1 the equation of state is given by the first viri
correction~5!, while for r̄.1 the quantity relevant to furthe
virial corrections isr15 ln r̄/N and the pressure correctio
itself scales asP15 ln Pc /N @Eq .~20!#. We have found the
solution in the interval 0,0r1,r1c50.3068 . . . . Two re-
gimes are present within this interval. Forr1,r1t
50.146 76 . . . thecorrectionPc vanishes for largeN, while
for r1,r1t it diverges for largeN. It is expected that the
presence of gaps ing(r ) will lead to qualitatively different
behavior for densities higher thanr1c .

In order that the present result be useful to the invest
tion of the static glassy transition, it needs to be accompan
by the analysis of the entropy of a hard sphere surrounde
other hard spheres, distributed according to the correla
function obtained in this work. This second task differs co
pletely in methods used, so we considered it reasonabl
treat the two problems separately.

Summarizing, even though we have not completed
analysis of the glass transition in a hard-sphere system
have achieved a partial step toward the solution.
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APPENDIX A

Here we derive the formula for the Fourier transform
high dimension. The Fourier transform inD52N13 dimen-
sions is (x andk areD-dimensional vectors!

f̂ D~k!5E dDx eixkf D~x!, ~A1!

f D~x!5~2p!2DE dDk e2ixkf̂ D~k!. ~A2!

We suppose that the functions depend only on the ra
coordinate,f (r )5 f D(x) for r 5uxu and f̂ (p)5 f̂ D(k) for p

5uku. After rescalingp̂5p/N we finally have

f̂ ~ p̂!5CNE
0

`

drE
21

1

dz@r 2(111/N)~12z2!eip̂rz#Nf ~r !,

~A3!

where the constantCN is fixed by the condition that for
f (r )5u(12r ) we have f̂ (0)5VD with VD the volume of
the D-dimensional sphere,

VD5
2pD/2

DG~D/2!
.S ep

N D N

. ~A4!

Similarly, for the inverse Fourier transform we have

f ~r !5ĈNE
0

`

dp̂E
21

1

dz@ p̂2(111/N)~12z2!eip̂rz#Nf̂ ~ p̂!

~A5!

with coefficient

ĈN5CNS N

2p D D

. ~A6!

The calculation of the Fourier transform can be performed
the saddle-point method. The essential result is the Fou
transform of the surface of a unit spheref (r )5d(r 21). We
obtain f̂ ( p̂)}C( p̂) where

C~ p̂!5C0~ p̂!5exp@2Nf0~ p̂!# ~A7!

for p̂,1 and

C~ p̂!5C1~ p̂!5exp@2Nf1~ p̂!#cos@Nf2~ p̂!# ~A8!

for p̂.1.
The explicit form of the functionsf0 ,f1 ,f2 is

f0~ p̂!512 ln 21 ln~11A12 p̂2!2A12 p̂2, ~A9!

f1~ p̂!512 ln 21 ln p̂, ~A10!
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f2~ p̂!5Ap̂2212arctanAp̂221. ~A11!

Note thatC(0)51.
From here we can deduce the following Fourier tra

forms @u(x)51 for x.0 andu(x)50 for x,0]. For f (r )
5Au(r 02r ),

f̂ ~ p̂!5AVD r 0
D C~ p̂r 0!. ~A12!

For f (r )5A (12r /r 0)u(r 02r ),

f̂ ~ p̂!5
AVD r 0

D

D11
C0~ p̂r 0!. ~A13!

Because the inverse Fourier transform has the same
and differs only in the factorĈN instead ofCN , we can also
immediately write forf̂ ( p̂)5Au( p̂c2 p̂)

f ~r !5S N

2p D D

AVD p̂c
D C~ p̂cr ! ~A14!

and for f̂ ( p̂)5A(12 p̂/ p̂c)u( p̂c2 p̂)
al
n-

m.
-

rm

f ~r !5S N

2p D D AVD p̂c
D

D11
C~ p̂cr !. ~A15!

APPENDIX B

Using MAPLE V we get the following expansion for th
solution of Eq.~18!:

p̂c
254 r122 r1

222/3r1
325/6r1

42
41

30
r1

52
469

180
r1

62
6889

1260
r1

7

2
24 721

2016
r1

82
2 620 169

90 720
r1

92
64 074 901

907 200
r1

10

2
1 775 623 081

9 979 200
r1

112
1 571 135 527

3 421 440
r1

12

2
1 882 140 936 521

1 556 755 200
r1

132
70 552 399 533 589

21 794 572 800
r1

14

2
2 874 543 652 787 689

326 918 592 000
r1

15

2
25 296 960 472 510 609

1 046 139 494 400
r1
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